issue_comments: 1043609198
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/simonw/datasette/issues/327#issuecomment-1043609198 | https://api.github.com/repos/simonw/datasette/issues/327 | 1043609198 | IC_kwDOBm6k_c4-NDZu | 208018 | 2022-02-17T23:21:36Z | 2022-02-17T23:33:01Z | NONE | On fly.io. This particular database goes from 1.4GB to 200M. Slower, part of that might be having no ``` $ datasette publish fly ... --generate-dir /tmp/deploy-this ... $ mksquashfs large.db large.squashfs $ rm large.db # don't accidentally put it in the image $ cat Dockerfile FROM python:3.8 COPY . /app WORKDIR /app ENV DATASETTE_SECRET 'xyzzy' RUN pip install -U datasette RUN datasette inspect large.db --inspect-file inspect-data.jsonENV PORT 8080 EXPOSE 8080 CMD mount -o loop -t squashfs large.squashfs /mnt; datasette serve --host 0.0.0.0 -i /mnt/large.db --cors --port $PORT ``` It would also be possible to copy the file onto the ~6GB available on the ephemeral container filesystem on startup. A little against the spirit of the thing? On this example the whole docker image is 2.42 GB and the squashfs version is 1.14 GB. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
335200136 |