issue_comments: 970853917
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/simonw/datasette/issues/1513#issuecomment-970853917 | https://api.github.com/repos/simonw/datasette/issues/1513 | 970853917 | IC_kwDOBm6k_c453g4d | 9599 | 2021-11-16T23:41:01Z | 2021-11-16T23:41:01Z | OWNER | One very interesting difference between the two: on the single giant query page:
The single big query takes 376ms total to render the page, spending 370ms in 5 queries Those 5 queries, if you're interested```sql select database_name, schema_version from databases PRAGMA schema_version PRAGMA schema_version explain with cte as (\r\n select rowid, date, county, state, fips, cases, deaths\r\n from ny_times_us_counties\r\n),\r\ntruncated as (\r\n select null as _facet, null as facet_name, null as facet_count, rowid, date, county, state, fips, cases, deaths\r\n from cte order by date desc limit 4\r\n),\r\nstate_facet as (\r\n select 'state' as _facet, state as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n),\r\nfips_facet as (\r\n select 'fips' as _facet, fips as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n),\r\ncounty_facet as (\r\n select 'county' as _facet, county as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n)\r\nselect * from truncated\r\nunion all select * from state_facet\r\nunion all select * from fips_facet\r\nunion all select * from county_facet with cte as (\r\n select rowid, date, county, state, fips, cases, deaths\r\n from ny_times_us_counties\r\n),\r\ntruncated as (\r\n select null as _facet, null as facet_name, null as facet_count, rowid, date, county, state, fips, cases, deaths\r\n from cte order by date desc limit 4\r\n),\r\nstate_facet as (\r\n select 'state' as _facet, state as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n),\r\nfips_facet as (\r\n select 'fips' as _facet, fips as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n),\r\ncounty_facet as (\r\n select 'county' as _facet, county as facet_name, count(*) as facet_count,\r\n null, null, null, null, null, null, null\r\n from cte group by facet_name order by facet_count desc limit 3\r\n)\r\nselect * from truncated\r\nunion all select * from state_facet\r\nunion all select * from fips_facet\r\nunion all select * from county_facet ```All of that additional non-SQL overhead must be stuff relating to Python and template rendering code running on the page. I'm really surprised at how much overhead that is! This is worth researching separately. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
1055469073 |