issue_comments
1 row where author_association = "CONTRIBUTOR" and "created_at" is on date 2020-06-10 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
issue 1
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
641908346 | https://github.com/simonw/datasette/issues/394#issuecomment-641908346 | https://api.github.com/repos/simonw/datasette/issues/394 | MDEyOklzc3VlQ29tbWVudDY0MTkwODM0Ng== | wragge 127565 | 2020-06-10T10:22:54Z | 2020-06-10T10:22:54Z | CONTRIBUTOR | There's a working demo here: https://github.com/wragge/datasette-test And if you want something that's more than just proof-of-concept, here's a notebook which does some harvesting from web archives and then displays the results using Datasette: https://nbviewer.jupyter.org/github/GLAM-Workbench/web-archives/blob/master/explore_presentations.ipynb |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
base_url configuration setting 396212021 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1