issue_comments
1 row where author_association = "CONTRIBUTOR" and issue = 1374626873 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Featured table(s) on the homepage · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
---|---|---|---|---|---|---|---|---|---|---|---|
1248204219 | https://github.com/simonw/datasette/issues/1810#issuecomment-1248204219 | https://api.github.com/repos/simonw/datasette/issues/1810 | IC_kwDOBm6k_c5KZhW7 | psychemedia 82988 | 2022-09-15T14:44:47Z | 2022-09-15T14:46:26Z | CONTRIBUTOR | A couple+ of possible use case examples:
In many cases, I suspect the raw content will be in one table, but the search table will be a second (eg FTS) table. Generally, the search may be over one or more joined tables, and the results constructed from one or more tables (which may or may not be distinct from the search tables). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Featured table(s) on the homepage 1374626873 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [issue] INTEGER REFERENCES [issues]([id]) , [performed_via_github_app] TEXT); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1