issue_comments
1 row where author_association = "NONE", "created_at" is on date 2022-09-15 and user = 82988 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1248440137 | https://github.com/simonw/sqlite-utils/issues/406#issuecomment-1248440137 | https://api.github.com/repos/simonw/sqlite-utils/issues/406 | IC_kwDOCGYnMM5Kaa9J | psychemedia 82988 | 2022-09-15T18:13:50Z | 2022-09-15T18:13:50Z | NONE | I was wondering if you have any more thoughts on this? I have a tangible use case now: adding a "vector" column to a database to support semantic search using doc2vec embeddings (example; note that the |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Creating tables with custom datatypes 1128466114 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
, [performed_via_github_app] TEXT);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1