issue_comments
1 row where author_association = "NONE" and user = 1059677 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 500238035 | https://github.com/simonw/datasette/issues/506#issuecomment-500238035 | https://api.github.com/repos/simonw/datasette/issues/506 | MDEyOklzc3VlQ29tbWVudDUwMDIzODAzNQ== | Gagravarr 1059677 | 2019-06-09T19:21:18Z | 2019-06-09T19:21:18Z | NONE | If you don't mind calling out to Java, then Apache Tika is able to tell you what a load of "binary stuff" is, plus render it to XHTML where possible. There's a python wrapper around the Apache Tika server, but for a more typical datasette usecase you'd probably just want to grab the Tika CLI jar, and call it with |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Option to display binary data 453846217 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
, [performed_via_github_app] TEXT);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1