issue_comments
1 row where issue = 451513541 and "updated_at" is on date 2019-06-13 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Full text search of all tables at once? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | issue | performed_via_github_app |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 501903071 | https://github.com/simonw/datasette/issues/498#issuecomment-501903071 | https://api.github.com/repos/simonw/datasette/issues/498 | MDEyOklzc3VlQ29tbWVudDUwMTkwMzA3MQ== | chrismp 7936571 | 2019-06-13T22:35:06Z | 2019-06-13T22:35:06Z | NONE | I'd like to start working on this. I've made a custom template for Can I make additional custom Python scripts for this or must I edit datasette's files directly? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Full text search of all tables at once? 451513541 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
, [performed_via_github_app] TEXT);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1